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Abstract
This review examines the advances, challenges, and future directions of artificial intelligence (AI) in medi-
cal image diagnosis. Medical image diagnosis is vital for modern healthcare but faces bottlenecks like heavy 
workloads and potential human errors. AI, especially deep learning, has driven transformative progress: U-Net-
based models excel in medical image segmentation (e.g., multimodal imaging for soft tissue sarcoma); CNNs 
achieve high accuracy in disease detection (e.g., ~96.57% for TB in chest X-rays, 99.75% for brain tumor 
MRI); GANs generate synthetic data and enhance images (e.g., AM-CGAN for chest X-rays), with denoising 
diffusion models outperforming GANs in diversity/fidelity; Transformers (e.g., TransUNet) capture global 
features to improve segmentation. AI applications span modalities: chest X-rays for COVID-19 (sensitivity 
94.7%), MRI for brain tumors, CT for cardiovascular assessment, ultrasound for breast cancer, and retinal im-
aging for diabetic retinopathy. However, challenges persist: data bias affecting generalizability, "black-box" AI 
lacking interpretability, regulatory/ethical issues, and data privacy concerns. Future trends include federated 
learning for collaborative, privacy-preserving model training, AI-powered radiomics for personalized medi-
cine, AI integration into clinical workflows, and self-supervised learning to address limited labeled data. AI 
holds great promise for advancing precision healthcare and improving patient outcomes.
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Introduction
Medical image diagnosis plays a pivotal role in modern healthcare, enabling early detection, accurate 

staging, and effective treatment planning for a wide range of diseases. From X-rays and CT scans to MRI 
and ultrasound, medical imaging modalities provide invaluable insights into the human body, guiding clin-
ical decisions and ultimately impacting patient outcomes. However, the sheer volume and complexity of 
medical images often strain the capacity of human experts, leading to potential for errors and delays in di-
agnosis. In recent years, artificial intelligence (AI) has emerged as a transformative force in medical image 
analysis, offering the promise of enhanced accuracy, efficiency, and accessibility in diagnostic workflows. 
This review aims to provide a comprehensive overview of the advances, challenges, and future perspectives 
of AI in medical image diagnosis.

This review will explore the significant advancements in AI-powered medical image analysis techniques, 
focusing on deep learning approaches such as image segmentation, Convolutional Neural Networks (CNNs) 
for disease detection and classification, Generative Adversarial Networks (GANs) for image enhancement, 
and the application of Transformer-based models. These techniques have revolutionized the field, enabling 
the development of sophisticated algorithms capable of automatically identifying and characterizing subtle 
abnormalities within medical images. Furthermore, the review will delve into the applications of AI across 
various medical imaging modalities and diseases, including AI-assisted diagnosis in chest X-rays for pul-
monary diseases, MRI for brain tumor detection, CT scans for cardiovascular assessment, ultrasound for 
breast cancer screening, and retinal image analysis for diabetic retinopathy. By examining these specific 
applications, we highlight the versatility and potential of AI to address diverse clinical challenges.

However, the integration of AI into medical image diagnosis is not without its challenges. This review 
will critically examine the limitations of current AI models, including data bias and generalizability issues, 
the lack of explainability and interpretability in deep learning models, and the regulatory and ethical con-
siderations surrounding the use of AI in healthcare. Addressing these challenges is crucial for ensuring the 
responsible and equitable deployment of AI in clinical practice. Finally, the review will explore future per-
spectives and emerging trends in the field, such as federated learning for collaborative model development, 
AI-powered radiomics and personalized medicine, the role of AI in integrated diagnostic workflows, and 
self-supervised learning for analyzing images with limited labeled data. These emerging trends promise to 
further enhance the capabilities of AI in medical image diagnosis and pave the way for a future where AI 
seamlessly integrates into clinical workflows, improving patient care and outcomes.

Advances in AI-Powered Medical Image Analysis Techniques
Deep learning has significantly advanced medical image segmentation (MIS), a critical process in disease 

diagnosis, treatment planning, and surgical navigation [1]. The application of deep learning models, particu-
larly those inspired by U-Net architectures, has yielded remarkable results across various imaging modali-
ties and clinical contexts, assisting clinicians in computer-assisted diagnosis, therapy, and surgical planning 

[3]. For instance, Guo et al. demonstrated that a deep convolutional neural network, when trained with 
multimodal images (MRI, CT, and PET), outperformed networks trained with single-modal images in seg-
menting soft tissue sarcoma lesions [3]. Furthermore, innovative network architectures, such as CTO, which 
combines Convolutional Neural Networks (CNNs), Vision Transformers (ViT), and a boundary detection 
operator, have achieved state-of-the-art accuracy in medical image segmentation, balancing accuracy and 
efficiency [4].

Building upon the advancements in image segmentation, Convolutional Neural Networks (CNNs) have 
emerged as a cornerstone in AI-powered medical image analysis for disease detection and classification 
[5]. Their inherent ability to automatically learn hierarchical features from images makes them particularly 
well-suited for this task. Sarawagi et al., for example, showcased the effectiveness of CNNs in detecting tu-
berculosis (TB) from chest X-ray images, achieving a high accuracy of approximately 96.57% [6]. Similarly, 
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Guo et al. proposed a deep CNN classifier, coupled with a sliding window algorithm, for crack detection 
in cracked tooth syndrome images, attaining an average accuracy of 90.39% [7]. Aaraji et al. also explored 
various deep learning architectures for Alzheimer's disease (AD) detection using brain MRI images and 
segmented images, with the ResNet architecture demonstrating the highest prediction accuracy (90.83% for 
original brain images and 93.50% for processed images) [8]. Vigneshwari et al. proposed a method that con-
ducts brain tumor segmentation using a modified Dense-Net architecture and then classifies them into those 
with Alzheimer's disease, Parkinson's disease, or normal brain function using a fully connected layer and 
softmax activation function [9]. The success of CNNs is largely attributed to their capacity to learn intricate 
patterns and features directly from image data, thereby eliminating the need for manual feature engineering 
[5].

Addressing the challenge of limited datasets in the medical field, Generative Adversarial Networks (GANs) 
have become a prominent research area in deep learning, particularly for their ability to generate synthetic 
data [11]. GANs can learn from existing training data and generate new data exhibiting similar characteristics 
[11]. For instance, Attention Mechanisms based Cycle-Consistent GAN (AM-CGAN) leverages attention 
mechanisms to generate synthetic chest X-ray (CXR) images that closely resemble real medical images and 
highlight disease-specific characteristics, achieving a high precision of 98.15% [11]. Furthermore, GANs are 
being investigated for medical image enhancement, with studies demonstrating their effectiveness in im-
proving image quality while preserving detailed information and realism [12]. However, denoising diffusion 
probabilistic models have recently addressed GANs' limited diversity and fidelity [18]. Müller-Franzes et al. 
introduced Medfusion, a conditional latent DDPM, and demonstrated that it exceeds GANs in terms of di-
versity (recall) and exhibits equal or higher fidelity (precision) across fundoscopy, radiographs, and histopa-
thology images [18].

In parallel with these developments, transformer-based models have emerged as powerful tools in medical 
image analysis, leveraging self-attention mechanisms to capture global dependencies and mitigate spatial 
biases inherent in CNNs [14]. Researchers have extended transformers to medical image segmentation tasks, 
resulting in promising models [15]. For example, the TransUNet architecture has demonstrated desirable per-
formance on multiple medical image segmentation datasets [16]. Das et al. proposed a coordinate-based em-
bedding that encodes the geometry of medical images, capturing physical coordinate and resolution infor-
mation without the need for resampling or resizing [14]. Experiments with UNETR and SwinUNETR models 
using this embedding for infarct segmentation on MRI data showed substantial improvements in mean 
Dice score by 6.5% and 7.6%, respectively [14]. The integration of transformers into U-Net architectures has 
proven particularly fruitful, enhancing accuracy and efficiency in medical image analysis [17]. However, the 
sample size of medical image segmentation still restricts the growth of the transformer, even though it can 
be relieved by a pretraining model [15]. Therefore, researchers are still designing models using transformer 
and convolution operators [15]. Furthermore, novel approaches like EG-SpikeFormer, an SNN architecture 
incorporating eye-gaze data, are being explored to guide model attention to diagnostically relevant regions, 
potentially addressing shortcut learning issues and improving interpretability [18].

Applications of AI in Specific Medical Imaging Modalities and Diseases
AI is rapidly transforming medical image diagnosis across various modalities and diseases, demonstrating 

significant potential for improving accuracy, efficiency, and accessibility. This section will explore specific 
applications of AI in chest X-ray imaging for pulmonary diseases, MRI for brain tumor detection and char-
acterization, CT scans for cardiovascular disease assessment, ultrasound image analysis for breast cancer 
screening, and retinal image analysis for diabetic retinopathy.

AI-assisted diagnosis has shown promising results in chest X-ray imaging for pulmonary diseases. Stud-
ies have demonstrated the capacity of AI systems to achieve performance levels comparable to, and in some 
cases exceeding, those of experienced radiologists in detecting conditions such as COVID-19 pneumonia 
and pulmonary arterial hypertension. For instance, Ippolito et al. reported that an AI system achieved high 
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sensitivity (94.7%) and specificity (80.2%) in detecting COVID-19 pneumonia [19]. Similarly, Imai et al. de-
veloped an AI algorithm for detecting pulmonary arterial hypertension using chest X-ray images, achieving 
an impressive area under the curve (AUC) of 0.988 [20]. Furthermore, research by Tzeng et al. highlighted 
the diagnostic potential of AI-assisted chest X-ray scans for COVID-19 detection, reporting a pooled sensi-
tivity of 0.9472 and specificity of 0.9610 across multiple studies [21]. Deep learning networks, such as Res-
Net101, have also demonstrated high success rates in classifying COVID-19, viral pneumonia, and normal 
images, as shown by Yenikaya et al. [29].

Moving beyond pulmonary applications, AI has made substantial strides in the detection and characteriza-
tion of brain tumors using MRI, considered the gold standard for brain tumor diagnosis [25, 29]. The effective-
ness of deep learning in solving image-based problems has led to its widespread adoption in medical imag-
ing [23]. Mathivanan et al. demonstrated the potential of MobileNetv3 architecture, achieving an accuracy of 
99.75% in brain tumor diagnosis, surpassing other existing methods [31]. Segmentation of brain tumors from 
multi-modal MRI images, crucial for treatment planning, has also benefited from deep learning advance-
ments [25]. These models encompass CNN-based architectures, vision transformer-based models, and hybrid 
approaches [25]. Rahman et al. introduced an AI-driven methodology using the EfficientNetB2 architecture, 
achieving high validation accuracies across different datasets, illustrating the performance gains achievable 
through advanced image preprocessing techniques [30].

The application of AI extends to cardiovascular disease assessment through enhanced analysis of CT 
scans. Coronary computed tomography angiography (CCTA), when coupled with AI, allows for non-inva-
sive evaluation of atherosclerotic plaque, a critical factor in predicting major adverse cardiac events [27]. AI 
algorithms can simulate human expertise to improve clinical efficiency [27]. AI-enabled plaque analysis on 
CCTA has shown strong correlation and high accuracy compared with intravascular ultrasound (IVUS) in 
quantifying and characterizing plaque volumes [31]. A case study by Cho et al. demonstrated the ability of 
AI-augmented CCTA to consistently assess the progression of plaque volumes, stenosis, and atherosclerotic 
plaque characteristics over an extended period [29].

AI-driven analysis is also being applied to ultrasound images for breast cancer screening, offering a po-
tentially more accessible and cost-effective approach, particularly for women with dense breasts [30]. Auto-
mated Breast Ultrasound (ABUS) systems, combined with AI algorithms, provide multiplanar 3D visualiza-
tion for whole-breast assessment with operator-agnostic acquisition [30]. A pilot project in Hungary explored 
the use of ABUS to complement mammography in breast cancer screening, yielding promising results [31].

Finally, AI has significantly advanced retinal image analysis for diabetic retinopathy (DR) detection, 
providing a pathway to automated, efficient, and accurate screening [32]. Deep learning models, particularly 
convolutional neural networks (CNNs), are used to identify DR features in retinal fundus images [43, 42]. One 
study evaluated an AI system integrated into a handheld smartphone-based retinal camera, achieving high 
sensitivity for detecting more than mild DR [33]. Another study using MATLAB-retrained AlexNet CNN 
achieved high validation accuracies in identifying non-disease, glaucoma, and diabetic retinopathy [34]. Au-
tomated retinal image analysis software (ARIAS) like EyeArt has demonstrated similar sensitivity to hu-
man graders in detecting diabetic retinopathy using both wide-field confocal scanning images and standard 
fundus images [35]. These advancements suggest that AI-powered retinal image analysis can significantly 
improve the efficiency and accessibility of DR screening programs [41, 44].

Challenges and Limitations of AI in Medical Image Diagnosis
The integration of artificial intelligence (AI) into medical image diagnosis promises enhanced accura-

cy and efficiency, yet several challenges and limitations impede its widespread and responsible adoption. 
These obstacles span technical, ethical, and regulatory domains, demanding careful consideration and pro-
active mitigation strategies.

One critical area of concern revolves around data bias and the generalizability of AI models [36]. While AI 
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algorithms possess the potential to reduce cognitive biases inherent in human interpretation, they are sus-
ceptible to internalizing and amplifying biases present within their training data. This can lead to skewed 
outcomes and potentially compromise patient care. The National Institutes of Health has emphasized the 
mitigation of unintended bias as a crucial translational goal that must be addressed early in the AI develop-
ment lifecycle [37]. Such biases can stem from various sources, including the underrepresentation of specific 
demographic groups, variations in image acquisition protocols across different institutions, and inconsis-
tencies in data labeling practices [36]. Overcoming these limitations necessitates meticulous data curation 
efforts aimed at minimizing biases and ensuring the creation of standardized, reproducible AI models [38]. 
Furthermore, rigorous performance evaluations that specifically assess generalizability, fairness, and overall 
trustworthiness are essential prerequisites for the successful integration of AI/ML algorithms into diverse 
clinical settings [39].

Another significant impediment to the deployment of AI in medical image diagnosis is the inherent lack 
of explainability and interpretability in many deep learning models [40]. Despite achieving high levels of 
accuracy, the "black box" nature of these models makes it difficult to discern the reasoning behind their 
diagnostic conclusions. This opacity can erode trust and hinder acceptance among clinicians, who require 
a clear understanding of a model's rationale to validate its findings and effectively integrate them into their 
clinical decision-making processes [40]. For instance, the lack of transparency has been identified as a sig-
nificant problem in AI tools designed for heart condition assessment using Cardiac Magnetic Resonance 
(CMR) imaging [41]. Researchers are actively exploring methods to enhance the explainability of AI systems. 
Approaches such as Discovering and Testing with Concept Activation Vectors (D-TCAV) aim to extract the 
underlying features crucial for cardiac disease diagnosis from MRI data [41]. In a similar vein, investigations 
into the performance of various interpretation methods on Vision Transformers (ViT) applied to chest X-ray 
classification have revealed that Layerwise relevance propagation for transformers outperforms Local inter-
pretable model-agnostic explanations and Attention visualization [42]. These efforts are crucial for fostering 
clinician trust and facilitating the seamless integration of AI into diagnostic workflows.

Beyond technical considerations, the integration of AI into healthcare raises significant regulatory and 
ethical concerns [43]. These include data privacy, algorithm bias, transparency, and accountability [46, 47, 53]. AI 
algorithms trained on biased datasets can perpetuate and exacerbate existing health disparities, resulting in 
inequitable outcomes for certain patient populations . Ensuring data privacy and obtaining informed consent 
are also of paramount importance, particularly given the increasing reliance on large medical datasets [44]. 
Pre-implementation, interdisciplinary discussions are essential to address pathway-specific considerations, 
emphasizing the need for transparency and robust oversight in AI-driven decision-making [45]. Therefore, 
the development and deployment of AI in medical imaging must adhere to stringent ethical guidelines and 
regulatory frameworks to ensure responsible and equitable use.

Finally, data privacy and security represent critical concerns when dealing with sensitive medical image 
data. The increasing reliance on digital medical imaging technologies necessitates robust protection against 
unauthorized access and potential cyberattacks [46]. Traditional encryption techniques may prove insufficient 
in the healthcare sector, prompting the development of innovative approaches such as the Crypto-Aware 
Elliptic Curve Diffie Hellman with Key Derivation Function (CAECDH-KDF) encryption technique to en-
hance the security of medical images [46]. Furthermore, with the proliferation of IoT applications and cloud-
based storage solutions, securing medical data in the cloud is of utmost importance [50, 62]. Approaches such 
as adding noise to medical records and denoising them using deep learning techniques, as proposed by 
Gowri S, offer lightweight cloud architectures that facilitate effective communication of medical data while 
preserving privacy [47]. De-identification of DICOM medical data is also crucial for safeguarding patient 
privacy, necessitating a systematic approach to remove Personally Identifiable Information (PII) [48]. Ad-
dressing these data privacy and security challenges is essential for maintaining patient trust and ensuring 
the responsible use of AI in medical image diagnosis.
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Future Perspectives and Emerging Trends
The field of AI in medical image diagnosis is poised for significant advancements, driven by emerging 

trends that address existing limitations and unlock new possibilities. These include collaborative model de-
velopment via federated learning, the application of AI-powered radiomics for personalized medicine, the 
integration of AI into clinical workflows and decision support systems, and the use of self-supervised learn-
ing to overcome the scarcity of labeled data.

Federated learning (FL) has emerged as a compelling solution for collaborative AI model development, 
particularly in the context of medical image diagnosis, where data privacy and limited datasets at individ-
ual institutions pose significant challenges. FL allows multiple institutions to collaboratively train a global 
model without directly sharing their sensitive local datasets, thereby upholding patient privacy [49]. This is 
especially crucial given the increasing volume of medical images and the difficulties associated with ob-
taining accurate annotations for training AI models [49]. Butt et al. demonstrated the efficacy of this approach 
with a collaborative FL architecture for COVID-19 screening using chest X-ray images, showing that a 
global, iteratively refined FL model can surpass the performance of local models in classification accuracy [50]. 
Further innovation in FL is seen in frameworks like MixFedGAN, proposed by Yang et al., which address-
es statistical heterogeneity and limited labeling issues in federated networks, yielding promising results in 
COVID-19 infection segmentation and prostate MRI segmentation [51]. The American College of Radiology 
(ACR) has also taken a proactive step with ACR Connect, a vendor-neutral software suite designed to de-
mocratize AI and facilitate federated learning across institutions, eliminating the need to transfer data off-
site [52].

Building upon the diagnostic capabilities of AI, radiomics is rapidly evolving as a powerful tool for per-
sonalized medicine, enabling clinicians to gain deeper insights into individual patients and tailor treatments 
accordingly [53]. Radiomics involves the extraction of a large number of quantitative features from medical 
images, which are then analyzed using machine learning techniques to predict various clinical endpoints [54]. 
Radiomic analysis has demonstrated promising performance in diagnosis, treatment response prediction, 
and prognosis, highlighting its potential as a non-invasive auxiliary tool for personalized medicine [54]. AI 
algorithms can identify novel biomarkers from imaging data to assist in tumor screening, detection, diagno-
sis, treatment planning, and prognosis prediction, ultimately leading to improved clinical outcomes through 
personalized treatment strategies [53]. The integration of radiomics with other "omics" data, such as genom-
ics, transcriptomics, and proteomics, further amplifies its potential for personalized medicine [55]. Saba et al. 
proposed an artificial intelligence (AI)—based preventive, precision, and personalized (aiP3) CVD/Stroke 
risk model, which combines radiomic-based biomarkers (RBBM) and genomic-based biomarkers (GBBM) 
to improve the overall specificity of CVD risk [56]. Attanasio et al. suggested that AI applications and radio-
mic analysis may lead to patient-specific treatments and management of several diseases linked with exces-
sive body fat [57].

As AI models become more sophisticated, their integration into diagnostic workflows and clinical deci-
sion support systems (CDSS) is becoming increasingly prevalent. AI-based imaging software, such as Veye 
Lung Nodules (VLN), aids in the detection, classification, and measurement of pulmonary nodules in CT 
scans, with clinicians reporting ease of use and minimal disruption to existing workflows. However, it is 
crucial to acknowledge that the performance of AI tools can vary and is influenced by factors such as inte-
gration into existing workflows, divisions of labor, knowledge, technical configuration, and infrastructure. 
Carmichael's research emphasizes the importance of how AI outputs are presented to clinicians, noting that 
risk-averse tendencies can significantly affect their interpretation and subsequent clinical decisions, poten-
tially leading to suboptimal behaviors or misleading information [58]. Further, Barinov et al. demonstrated 
that incorporating an AI-based decision support system into ultrasound image analysis could improve diag-
nostic performance, underscoring the need for careful evaluation of efficacy when integrated into existing 
clinical workflows [59].



Artificial Intelligence and Medicine Vol.1 Iss.1 Mason Publish Group

34
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative 

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Finally, self-supervised learning (SSL) is emerging as a transformative approach to address the persistent 
challenge of limited labeled data in medical image analysis. Traditional supervised learning methods typi-
cally require large, expertly annotated datasets, which are often expensive and time-consuming to acquire, 
particularly in the medical domain. SSL offers a way to leverage the abundance of unlabeled medical im-
ages to pre-train models, enabling them to learn useful representations that can be fine-tuned with limited 
labeled data for specific tasks. Felfeliyan et al. proposed a self-supervised pretraining method involving 
applying distortions to unlabeled images and training a Mask-RCNN architecture to localize the distortion 
and recover the original pixels, which improved the Dice score by up to 18% in knee effusion segmentation 
compared to training with limited annotated data [60]. Xing et al. demonstrated that a Masked AutoEncoder 
(MAE) based on Vision Transformer (ViT) achieved superior performance in COVID-19 chest X-ray image 
classification compared to training from scratch or transfer learning, especially when working with limited 
datasets, achieving an accuracy of 0.985 and an AUC of 0.9957 [61]. Yuan et al. proposed a semi-supervised 
skin cancer diagnostic model based on Self-feedback Threshold Focal Learning (STFL), capable of utiliz-
ing partial labeled and a large scale of unlabeled medical images for training models in unseen scenarios, 
demonstrating robust performance with limited annotated samples [62]. Similarly, LoGoNet, introduced by 
Monsefi et al., integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel 
Attention (LKA) and a dual encoding strategy to capture both long-range and short-range feature dependen-
cies adeptly, and they also proposed a novel SSL method tailored for 3D images to compensate for the lack 
of large labeled datasets [63]. Cai et al. proposed a universal self-supervised Transformer framework, named 
Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in oph-
thalmic images [64]. These studies collectively demonstrate the potential of SSL to significantly enhance the 
performance of AI models in medical image analysis, particularly in scenarios where labeled data is scarce.

Conclusion
In summary, this review has highlighted the remarkable progress of AI in medical image diagnosis, show-

casing its potential to revolutionize healthcare through enhanced accuracy, efficiency, and accessibility. 
From deep learning-powered image segmentation and disease classification to AI-assisted diagnosis across 
various medical imaging modalities, AI is demonstrating its versatility and ability to address diverse clinical 
challenges. While challenges remain, including data bias, lack of explainability, and regulatory concerns, 
the field is rapidly evolving, with emerging trends like federated learning, radiomics, integrated diagnostic 
workflows, and self-supervised learning paving the way for a more personalized and data-driven approach 
to medicine.

Looking ahead, the future of AI in medical image diagnosis is brimming with possibilities. As AI models 
become more sophisticated and integrated into clinical practice, we can envision a future where clinicians 
are empowered with powerful tools to make more informed decisions, leading to earlier diagnoses, more ef-
fective treatments, and ultimately, improved patient outcomes. The ongoing research and innovation in this 
field hold the promise of transforming healthcare as we know it, ushering in an era of precision medicine 
where AI plays a central role in delivering personalized and patient-centric care. It is now time to embrace 
the transformative power of AI and work collaboratively to realize its full potential in improving the health 
and well-being of individuals worldwide.
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