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Abstract:
With the rapid advancement of artificial intelligence technology, Large Language Models (LLMs) have
gradually become a significant driving force in the intelligentization of software development.
Meanwhile, low-code platforms have gained widespread adoption in enterprise information system
construction due to their rapid development capabilities and ease of use. However, existing low-code
platforms still exhibit limitations in terms of flexibility and intelligence. To address these issues, this
paper proposes an intelligent development tool that integrates large language models with low-code
platforms. Leveraging the natural language understanding and code generation capabilities of large
language models, this approach significantly enhances the intelligence of low-code platforms. The paper
elaborates on the design principles, key technical implementations, and practical application effects of
the proposed intelligent development tool. Furthermore, the effectiveness of this method is validated
through practical case studies.
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1 INTRODUCTION

In recent years, as digital transformation has deepened, enterprises have increasingly demanded greater
efficiency and flexibility in software development. Low-code platforms, renowned for their rapid
development speed and user-friendly operation, have emerged as a key choice for corporate digitalisation
initiatives. The 2025 Government Work Report explicitly states that efforts will continue to advance the ‘AI
Plus’ initiative, promoting the deep integration of digital technologies with manufacturing and market
strengths, while supporting the application of large models across broader domains. Furthermore, the draft
National Economic and Social Development Plan for 2025 emphasises increased investment in artificial
intelligence, driving technological innovation and industrial implementation of large language models.
However, traditional low-code platforms still face limitations in functional scalability and intelligent
development assistance. Concurrently, the rapid advancement of large language model technology has opened
new avenues for intelligent software development. How to leverage large language models to enhance the
intelligence of low-code platforms has thus become a critical research focus. With the rapid advancement of
artificial intelligence technology, large language models (LLMs) have demonstrated immense potential in the
software development domain. Concurrently, low-code platforms, owing to their convenience and efficiency,
have progressively become vital tools supporting enterprise digital transformation. Nevertheless, traditional
low-code platforms exhibit shortcomings in intelligent development assistance, flexibility, and support for
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complex business operations. This paper proposes an intelligent development tool that deeply integrates LLM
technology with low-code platforms. Through techniques such as natural language understanding, intelligent
code generation, and component recommendation, it significantly elevates the intelligence level of low-code
platforms. It details the technical architecture, functional module design, and key implementation of this
intelligent development tool, validating its effectiveness and feasibility through practical project case studies.
Additionally, it proposes an LLM-enhanced low-code development architecture (LLM4LC), which overcomes
the logical expression limitations of traditional low-code platforms by constructing a three-tier cognitive
reasoning engine. Experiments demonstrate that this architecture substantially improves the efficiency of
converting business requirements into executable systems. Key components include: 1) a multimodal
requirements parser; 2) a dynamic domain adaptation layer; and 3) a security-enhanced code generator. The
system has achieved commercial deployment in the government sector, supporting the construction of over
100 pages daily.

2 RESEARCH OVERVIEW

2.1 Research Background

Industry pain points: Traditional low-code platforms suffer from limitations in logical expression
capabilities (only capable of handling 30% of complex business scenarios) and high domain adaptation costs
(new business module development requiring 2-4 weeks) [5]. Technical breakthrough: The complementary
nature of large models like GPT-4 and DeepSeek—demonstrating code generation capabilities (67% pass rate
on HumanEval tests)—with low-code visual configuration.

2.2 Innovative Contributions

Proposing a cognitive enhancement code generation paradigm (CogCode) to achieve a three-stage mapping:
natural language requirements → visual components → executable code.
Constructing a domain knowledge distillation framework, which enhances the code generation accuracy of

foundational models in specific business scenarios by 41.2% through few-shot fine-tuning [6].
Designing a security sandbox mechanism to effectively intercept potential malicious code injection risks.

3 TECHNICAL ARCHITECTURE DESIGN

3.1 Overall System Architecture

Figure 1：Overall system architecture diagram
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The system’s overall architecture comprises three principal components:
1) Input Layer: Receives diverse input data.
2) Cognitive Reasoning Engine: The core processing module responsible for parsing, reasoning, and

generation.
3) Output Layer: Generates the final executable system while supporting manual feedback.
The Input Layer consists of data from three distinct sources:
Natural Language Descriptions: Users articulate requirements in natural language, e.g., ‘I require an online

shopping system.’
Flowcharts/UI Sketches: User-provided flowcharts or interface sketches, which may be hand-drawn or

generated by design tools.
Historical Requirement Documents: Existing requirement documents or reference materials from similar

projects.
These inputs are processed through a multimodal parser. The role of the multimodal parser is to convert

inputs of different forms (natural language, graphical descriptions, historical documents) into a unified
internal representation for use by subsequent modules.
Cognitive Reasoning Engine: This constitutes the system's core component, comprising the following

modules:
Domain Knowledge Distillation Module: Extracts domain-relevant knowledge from information processed

by the multimodal parser. Integrates with the domain knowledge repository for dynamic updating and
optimisation. Generates a dynamic component library containing reusable modules, elements, or code
snippets.
Logical Constraint Parser: Analyses logical relationships and constraints within inputs, such as business

logic and user permissions. Outputs to the secure code generator to ensure generated code adheres to logical
constraints and remains secure and reliable. Dynamic Component Library and Secure Code Generator: The
dynamic component library provides reusable components for subsequent visual interface orchestration. The
secure code generator produces code compliant with security standards, mitigating potential vulnerabilities.
Output Layer: The output layer constitutes the system's final deliverable, comprising the following modules.
Visualisation Orchestration Interface: Generates a visual interface based on the dynamic component library,

enabling users to intuitively view and adjust system designs.
Runtime Sandbox: Executes generated code within an isolated environment, ensuring secure and expected

behaviour.
Executable System: Ultimately outputs a directly executable system, such as a complete software

application or service.
Manual Verification Feedback: Users may manually verify and provide feedback on the visual orchestration

interface. This feedback flows back to the domain knowledge distillation module to refine the dynamic
component library and subsequent generation logic.
This architecture describes a highly automated, intelligent system designed to parse requirements from

diverse inputs and generate final executable systems, while supporting human feedback for optimisation.
Key highlights of the entire process include:
1) Multimodal input support (natural language, sketches, historical documents).
2) Cognitive reasoning engine for domain knowledge extraction and logical analysis.
3) Output phase incorporates manual verification and feedback loops to continuously enhance system

performance.
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3.2 Multimodal Requirement Parser

3.2.1 Cross-modal alignment model

1)Improved CLIP Architecture
Employing ViT-L/14 as the visual encoder and RoBERTa-large as the text encoder [7]. Cross-modal

attention formula:

Attention �, �, � = softmax ���

��
�

Q (Queries) in the formula: Represents the query vector at the current time step or for the current input. This
typically originates from the output of the text encoder. K (Keys) in the formula: Represents the key vector
associated with the input data. This may be considered a representation linked to specific image features. V
(Values) in the formula: Represents the value vector associated with the key vector, determining the final
output returned to the model. The three pivotal elements within the cross-modal attention mechanism: Query,
Key, and Value. This formula systematically defines how features are extracted from text and images and
utilised for cross-modal tasks. By transforming textual and image features into $Q$, $K$, and
$V$ respectively, the model effectively distinguishes and leverages information from both modalities, thereby
enhancing its performance in multimodal tasks.
1)Adaptive Weight Allocation
Introducing a gating mechanism to dynamically adjust the contribution of multimodal features [8]:
� = � �� �text; �image

�fused = � ⋅ �text + 1 − � ⋅ �image

In the formula, g represents a threshold value computed via a sigmoid function (σ). This sigmoid function
maps its input to values between 0 and 1, indicating the relative importance of text and image.
In the formula, Wg denotes a weighting matrix that is multiplied by the concatenated result of the text

embedding Etext and the image embedding Eimage. This design enables the model to learn the importance of
input modalities, thereby dynamically adjusting its weights.
The fusion result Efused in the formula favours image features when g approaches zero. This weighted

averaging method effectively integrates information from both modalities. The gating mechanism adaptively
adjusts feature importance, thereby enhancing the model’s overall performance.
This adaptive gating mechanism dynamically adjusts the contribution ratio of textual and visual information,

enabling better capture of their interrelationships and improving the performance of multimodal learning
models. When tackling complex cross-modal tasks such as image-text matching or image caption generation,
this flexible weight allocation proves crucial to model effectiveness.
Adaptive weight distribution finds extensive application in the convergence of computer vision and natural

language processing. For instance, in tasks like image-text matching or image caption generation, dynamically
adjusting modal weights enables models to more effectively comprehend and generate contextually relevant
information.

3.2.2 Cross-modal alignment model

Generation of structured requirement descriptions, designed using a domain-specific language (DSL) based
on the JSON Schema specification. For example:
{
"form": {
"labelCol": 6,
"wrapperCol": 12

046



Journal of Intelligent Machinery and Equipment Vol.1 Iss.1 2025

© 2025 by the author(s); licensee Mason Publish Group, this work for open access publication is under the
Creative CommonsAttribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

},
"schema": {
"type": "object",
"properties": {
"43y1uj2k5e6": {
"x-decorator": "FormItem",
"x-component": "PageModel",
"x-validator": [],
"x-component-props": {
"outerId": "1785212260029902850",
"extraStyle": "color:blue;"
},
"x-decorator-props": {},
"x-designable-id": "43y1uj2k5e6",
"x-index": 0,
"_randomValueForUpdate": 0.12138395486446818,
"x-reactions": {
"dependencies": [
{
"property": "value",
"type": "any"
}
]
},
"description": ""
}
},
"x-designable-id": "y5ixw8i8akd"
}
}
Employing a component-based approach, each page unit is mapped to a designated component. Through the

combination and nesting of different components, the final page’s visual representation is achieved. A
standard event mechanism is provided externally, with all interactive behaviours implemented via an event
registration pattern.

4 SECURITY-ENHANCED CODE GENERATION

4.1 Code auto-generation

Based on low-code design patterns and over twenty low-code project case studies, model training has been
completed. Upon finalising data models and ER model designs, the model can automatically generate page
and form models through product design specification documents. This encompasses capabilities including
visual page construction, page scripting, interactive event configuration, and cloud function scripting. Design
deliverables undergo acceptance testing by quality assurance personnel, with feedback on identified issues
achieving the effect of manual verification.
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4.2 Static Analysis Engine

The static analysis engine scans source code without executing it. It identifies security vulnerabilities or
quality issues by analysing patterns within the code. The static analysis engine converts code into an abstract
syntax tree (AST), a tree structure that better represents the logical relationships within the code. The engine
traverses this AST, applying predefined detection rules to identify issues in the code. An AST rule library has
been constructed, encompassing 210 vulnerability and quality patterns. This not only identifies errors and
vulnerabilities within the code but also enhances the overall security and quality of the code. Key detection
rules are illustrated below:
class SQLInjectionDetector:
patterns = [
r"execute\(.*?['\"]\s*\+\s*[\w]+\)",
r"format\(.*?%s.*?\)"

]

def scan(self, code):
violations = []
for node in ast.walk(parse(code)):
if isinstance(node, ast.Call):
for pattern in self.patterns:
if re.search(pattern, unparse(node)):
violations.append(node.lineno)

return violations

4.3 Dynamic Sandbox Design

A dynamic sandbox constitutes an isolated execution environment, permitting code to run within a
controlled virtualised setting to prevent impact on the host system. The design of dynamic sandboxes typically
incorporates the following core characteristics:
1) Isolation: Code within the sandbox operates in isolation from the host system, preventing malicious or

erroneous code from affecting the host environment.
2) Dynamicity: The sandbox dynamically configures resources such as memory, CPU, and network access

permissions according to requirements.
3) Monitoring and Auditing: The sandbox continuously monitors code execution behaviour in real-time and

logs activities, facilitating debugging and issue tracing.
When integrating large language models with low-code platforms during code generation, the sandbox

serves the following purposes:
1) Security: When executing code generated by large language models, the dynamic sandbox prevents

potential security vulnerabilities from compromising the system.
2) Verification: The sandbox environment validates the correctness and functionality of generated code,

ensuring it meets expectations.
3) Multi-language Support: The sandbox supports multiple programming languages and frameworks,

facilitating developer testing of diverse code types. In this implementation, hardware-level isolation was
achieved using Kata Containers [9]. An example resource restriction policy is as follows:
resources:
limits:
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cpu: "2"
memory: 4Gi
requests:
cpu: "0.5"
memory: 1Gi

securityContext:
readOnlyRootFilesystem: true

5 Experiments and Evaluation

5.1 Cross-domain validation experiments

The results of the verification experiments are shown in Table 1.
Table 1 System generation accuracy test

Test Scenario
Complexity

of
requirements

Generation
accuracy/%

Execution
success
rate/%

Large-screen
monitoring
system

High (nested
conditions
exceeding
five layers)

95.70 98.20

Administrative
Approval
Process

China
(parallel
approval
node)

89.30 96.50

Medical
Consultation
System

High (time-
dependent) 82.10 93.80

5.2 Performance Stress Testing

The results of the stress test are shown in Table 2.
Table 2 System performance stress testing

Number of concurrent
users

Average response
time/s

error rate
/%

100 1.2 0.01

500 2.8 0.87

1000 4.5 1.5

6 ENGINEERING PRACTICE CASE STUDIES

Taking the development of a municipal smart property management system as a practical case study, the
application was constructed using the intelligent development tools proposed in this paper. The results
demonstrate:
1) The project, initially scheduled for a six-month development cycle based on experience, was completed in

just 2.5 months using this approach. Development efficiency increased by approximately 60%, with the cycle
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shortened by more than half;
2) User learning costs were significantly reduced, enabling even junior developers to become proficient

rapidly;
3) System flexibility and intelligence levels were markedly enhanced, strengthening its capacity to meet

complex business requirements.

7 CONCLUSION AND OUTLOOK

This paper addresses the shortcomings of current low-code platforms in intelligent development by
proposing a novel intelligent development tool that integrates large-model technology with low-code
platforms. Through establishing a four-tier technical architecture comprising the user interaction layer,
intelligent processing layer, low-code platform layer, and infrastructure layer, it achieves key functionalities
such as natural language requirement parsing, intelligent code generation, and intelligent recommendations.
Practical case studies demonstrate that this tool effectively enhances the intelligence of low-code platforms,
significantly boosts development efficiency, lowers the technical threshold for developers, and meets
enterprises' increasingly complex business requirements. During practical application, this intelligent
development tool exhibits distinct advantages: Firstly, development efficiency improves by approximately
60%, markedly shortening development cycles and enabling enterprises to respond more swiftly to market
demands. Secondly, natural language interaction reduces developers' learning curve, enabling non-
professional developers to quickly get up to speed and achieve seamless integration between business
requirements and technical implementation. Furthermore, the introduction of intelligent recommendation
features has effectively enhanced the development experience and component reuse rate, further improving
software quality and stability. Nevertheless, the intelligent development tool proposed in this paper still has
certain limitations and room for improvement, warranting further in-depth research. Future research directions
could focus on the following aspects:
Firstly, further optimise the deep integration between large language models and low-code platforms. While

the current technical architecture has achieved preliminary convergence, there remains scope for improvement
in model inference efficiency, real-time responsiveness, and resource consumption. Future exploration should
focus on lighter-weight model architectures or model compression techniques to enhance inference efficiency,
reduce deployment costs for large models, and elevate the system’s real-time interactive capabilities.
Second, expand the application scenarios of intelligent development tools. Current implementation cases

primarily focus on approval-based business systems. Future exploration should target more complex industry
applications, such as intelligent development requirements in finance, healthcare, and manufacturing
sectors[10], to validate the tools' universality and robustness.
Third, enhance the precision and reliability of natural language understanding and code generation.

Although large models demonstrate strong generalisation capabilities, their accurate comprehension of
complex business logic and specialised industry rules requires further refinement. Future efforts should
integrate domain knowledge graphs and business rule engines to strengthen models’ comprehension of
specialised domain knowledge, thereby further improving the accuracy and reliability of generated code.
Fourthly, further enhance debugging efficiency. Combining AI-based debugging tool frameworks with static

and dynamic analysis techniques can significantly boost debugging efficiency in complex systems.
Finally, establishing an ecosystem for intelligent development tools. Creating an open marketplace for

model services and components will attract more developers to participate in ecosystem development,
fostering a virtuous cycle. This will further enrich tool functionality and application scope, promoting the
healthy development of intelligent development ecosystems on low-code platforms.
In summary, the integration of large language models with low-code platforms holds vast development
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potential. Future research and practice will further advance the maturity and adoption of intelligent
development tools, providing more robust technical support for enterprise digital transformation.
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