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Abstract

In order to improve the convergence of multi-objective differential evolution (DEMO) algorithm while ensur-
ing well distribution, a new method of center mutation-based DEMO (CM-DEMO) is proposed. Firstly, the
form of mutation is improved, the center of the population in the current generation is taken as a base vector,
and then the direction of difference vector is determined according to the fitness value of the three random
vectors of individuals, secondly, the strategy of adaptive crossover probability is given, the crossover proba-
bility is determined according to the distribution of fitness value in the population. Test of benchmark func-
tions show that CM-DEMO algorithm has faster convergence rate. Finally, CM-DEMO is applied to environ-
mental economic dispatch of power system. Compared with other methods, the simulation results obtained

demonstrate the feasibility and effectiveness of the proposed algorithm for solving the problem.

Keywords: Differential evolution; Multi-objective optimization; Center mutation; Environmental eco-
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1 INTRODUCTION

Many real world problems can be formulated as optimization problems with multiple objectives. Since the
first attempt to solve multi-objective optimization problems by using evolutionary algorithms, multi-objective
evolutionary algorithms(MOEAs)have been much researched and are widely used to solve numerous appli-
cations in recent years (Coello, 2006; Nam & Park, 2000). MOEAs benefit from the evolutionary algorithm’s
ability to generate a set of solutions concurrently in a single run thereby yielding several trade-off solutions.

Differential evolution (DE) is a new generation evolutionary algorithm (EA) and has been successfully
applied to solve a wide range of optimization problems. Differential evolution (DE) is a new type of evo-
lutionary algorithm proposed by Storn and Price in 1995 (1997). It is simple yet powerful, and has been
successfully used in solving single objective optimization problems. In recent years, some researchers have
extended it to deal with multi-objective optimization problems, such as Pareto differential evolution (PDE) al-
gorithm (Abbass, 2002; Xue, Sanderson & Graves, 2003), Pareto-based multi-objective differential evolution
(PMODE) (Madavan, 2002) differential evolution for multi-objective optimization (DEMO) and adaptive
differential evolution algorithm (ADEA) (Robic & Filipic, 2005; Qian & Li, 2008).

However, most of these DE based multi-objective optimization algorithms suffer from premature con-
vergence at different degrees (Madavan, 2002; Robic & Filipic, 2005; Qian & Li, 2008). In this paper, we
present a new multi-objective optimization of center mutation-based DEMO (CM-DEMO). The CM-DEMO
has two improvements: a mutation operator composed of the modified base vector and differential vectors,
the former is set as the center of all target vectors, and the latter is determined by the function fitness value of
three randomly selected vectors; an adaptive crossover probability process according to the distribution of the
function fitness value. For illustration, CM-DEMO was applied to solve the environmental economic dispatch
problem, which consists of four interconnected cascade hydro plants and a thermal plant. Simulated results
demonstrate the feasibility and effectiveness of the proposed method.

The rest of the paper is organized as follows: The DE principle which CM-DEMO is based on is briefly de-
scribed in Section 2. Afterward, in Section 3, we present CM-DEMO for solving problem in details. Section
4 presents the application study of CM-DEMO to a practical environmental economic dispatch problem. Sec-
tion 5 outlines the conclusions followed by acknowledgements.

2 OVERVIEW OF DIFFERENTIAL EVOLUTION

DE algorithm is a population based algorithm using three operators; crossover, mutation and selection.
Several optimization parameters must also be tuned (Storn & Pric, 1997). The approach uses a population

P that contains NP n-dimensional real-valued parameter vectors (named X) in generation g. According to
Storn and Price, DE’s strategy can be described as follows.

2.1 Mutation

For each target vector x?, i=1,2,...,NP a mutant vector vf“ is generated according to (Storn & Pric,
1997):

Vi = x84 (xf —xf), i=12,...NP (1)

where integers n, r, and p are chosen randomly in the range [1, N, ], and are different from each
other. The mutation parameter F ([0, 2]) is a real, constant, user-supplied parameter that controls the amplifi-

cation of the differential vector (named V/ ).
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2.2 Crossover

In order to increase the diversity of the perturbed parameter vectors, crossover is introduced. The target

vector is mixed with the mutated vector, using the following scheme, to yield the trial vector uf”, as follows
(Storn & Pric, 1997):

" ,”'/” , if (random() < CR) or j = randomRange(l,n) @)

L]
xé’

i,j?

otherwise

In the above, function random () generates a random number in [0, 1], CR (€ [0, 1]) is the crossover pa-

g+l
i

rameter, and the integer j is a randomly chosen index in {1, 2, .. ., n} that ensures candidate 1.~ get at least

one parameter from trial parameter vector v¢*' but not all from x; ;-

2.3 Selection

When selection operation is implemented, a knock-out competition is played between the target vector x¥

and its corresponding trail vector #* o According to the value of fitness, the better one will be selected for the
next generation. Assuming that the fitness value is to be minimized, the selection operation can be expressed

as (Storn & Pric, 1997):

o+ i
xF =

3)

4

g+l . g+l g
uf", if uf" better than x;
xf,  otherwise

3 AN ENHANCED MULTI-OBJECTIVE DIFFERENTIAL
EVOLUTION:CM-DEMO

In this section, by analyzing the mutation and crossover operation in the process of algorithm, the cen-
ter mutation-based DEMO (CM-DEMO) algorithm is proposed. First, the CM-DEMO algorithm will be
described in details, and then several typical and widely used benchmark test problems are chosen to test
CM-DEMO.

3.1 Center mutation operator

From (1) we can conclude that DE algorithm randomly selects two individuals to calculate the difference as
the difference vector, here the direction of difference vector is ignored. In this condition, the search capability
is improved to some extent, but the convergence rate of the algorithm is slow down. In this section an opera-
tor called the center mutation operator is proposed, that is, each individual by mutation is around the center of
contemporary population. The specific form of mutation operator is described as follows

VET = C8 4+ F (XS - XE)+ F* (X5 - X5) )

Where, X, is the best individual in the three random individuals; X; and X are the other two random indi-
viduals; C is the center of population.

Formula (4) shows that for each mutation individual, it is calculated based on the fitness value of the three
random individual, then starts from the group center toward the of best individual X,. Here the direction
which X, point to is the direction of difference vector, making the improved mutation operator not only retain
a certain degree of randomness, but also the guidance of certainty is considered. Thus, under the action the
center mutation operator, the new algorithm will have a faster convergence speed.
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3.2 A daptive crossover probability

In the standard DE algorithm, fixed CR is commonly used, that is in the process of solving problems, the
crossover probability of each individual is identified with a certain value. However, in solving practical prob-
lems, the value should be adjusted appropriately based on the iteration cycle and the function values of each
individual, making the algorithm acted in line with the characteristics of problem. Here a method of adaptive
crossover probability is presented in Equation 5 (take the minimize problem as the case)

max ‘F'_F“ ,‘ FoF, ‘ ,F>F (%)
CR ‘E_Fmin Fmax_ min ' ’
- H ‘ F;_ min ‘ E)_E ‘
min ‘F — 'F —r ,other

Where CR; is the crossover probability of each individual; Fiand F, are the function values of the individu-
als Xi and X; Fimin and Fiax are the values of the best and worst individuals in current generation.

Formula (5) shows that, when Fi>Fj, the crossover probability should be increased, in order to generate
more mutation individuals Vi in the new individuals, the adjustment strategy is: by comparing the propor-
tion which F; to the current generation and the proportion which F, to Fj, the greater proportion is choose as
the value of crossover probability of the target individual; when Fi<F,, the crossover probability should be
reduced, then individual X; take more components in the new individuals, the adjustment strategy is: by com-
paring the proportion which F; to the current generation and the proportion which F, to Fi, the smaller propor-
tion is choose as the value of crossover probability. This method can effectively adjust the composition of the
individual generated according to the function value of individuals in iterative process, and then the search
performance of algorithm is improved.

3.3 Outline of CM-DEMO

According to the above description of the improved algorithm, the outline of CM-DEMO is described as
follows:

Table 1: The main procedure of e-ODEMO

Algorithm: Main procedure of the proposed CM-DEMO

Initialize population randomly;
While the halting criterion is not satisfied do
Calculate the fitness function;
Mutation according to formula (4);
Calculate CR according to formula (5), crossover according to formula (2);
Choose according to formula (2);

end while

3.4 Performance test

The test problems for evaluating the performance of our methods are chosen based on significant past stud-
ies in multi-objective evolutionary algorithms. We chose four problems from benchmark to test CM-DEMO
(Zitzler & Thiele, 2000; Deb, Thiele, Laumanns & Zitzler, 2005).

For every test problem: a crossover probability CR was set to 0.5, scaling factor F was set to 0.5. In order
to make the comparisons fair, the population size NP was set to 100 and the algorithm was run for 250 gener-
ations.
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Figures 1-4 show the Pareto fronts obtained by CM-DEMO and the real Pareto fronts of four ZDT test
problems. As can be seen, solutions obtained by CM-DEMO scale very well in terms of convergence and
widely-distributed.
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Tables 2 present the mean (boldfaced font above) and variance (underside) of the values of the convergence
and diversity metric averaged over 10 runs (Deb & Jain, 2002; Van Veldhuizen, 1999). Results of other algo-
rithms are taken from the literatures(NSGA- II, SPEA2, PDEA, DEMO, ADEA and DEMO/parent).

Table 2: Statistics of results on convergence metric y and diversity metric A

Metrics  Problems NSGA-II SPEA2 DEMO PDEA ADEA PDEMO CM-
(real-coded) DEMO
v ZDT1 0.033482 0.023285  0.001083 / 0.002741  0.005800 0.000028
0.004750 0 0.000113 / 0.000385 0 0
ZDT3 0.114500 0.018409  0.001178 / 0.002741  0.021560  0.00017
0.007940 0 0.000059 / 0.000120 0 0
ZDT4 0.513053 49271 0.001037 / 0.100100  0.638950  0.002190
0.118460 2.703 0.000134 / 0.446200  0.500200 0.000097
ZDT6 0.296564 0232551 0.000629 / 0.000624  0.026230  0.000016
0.013135 0.004945  0.000044 / 0.000060  0.000861 0
A ZDT1 0.390307 0.154723 0325237 0.298576  0.382890 !/ 0.146883
0.001876 0.000874  0.030249  0.000742  0.001435 / 0.000062
ZDT3 0.738540 0.469100 0.309436  0.623812  0.525770 / 0.433462
0.019706 0.005265  0.018603  0.000225  0.043030 ! 0.000453
ZDT4 0.702612 0.823900  0.359905  0.840852  0.436300 / 0.157800
0.064648 0.002883  0.037672  0.035741  0.110000 / 0.000305
ZDT6 0.668025 104422 0.442308 0.473074  0.361100 / 0.114263
0.009923 0.158106 0.021721 0.021721  0.036100 / 0.001769
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The results of convergence metric(see Table 2) for these three problems show that CM-DEMO achieves
good convergence, which is rather better than PDEA, DEMO, and DEMO/parent, and much better than
NSGA- II and SPEA2. On ZDT3, DEMO achieves comparable results to CM-DEMO, but on ZDT1 and
ZDT6, CM-DEMO performances better. For another metric A , showed in Table 2 CM-DEMO achieves
much better results on four test problems than the other algorithms referred here.

ZDT4 is a difficult optimization problem with large number of local Pareto fronts that tend to mislead the
optimization algorithm. In Table 2 we can see that NSGA- II, SPEA2, PDEA and MODE all have difficulties
in converging to the true Pareto front. DEMO, CM-DEMO performs better than the other algorithms.

Problem Tamaki is constrained test problem and DTLZ1 is high-dimension problem (M=3). Figures 5 and
6 show the Pareto fronts obtained by CM-DEMO.
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Figure 5. Pareto front for Tamaki Figure 6. Pareto front for DTLZ1
From Figures 5 and 6 we can see that CM-DEMO handled constraints and high-dimension problem well,
also it converged to the true Pareto front accurately. After achieving good performance on test problems, next

we will apply CM-DEMO to a practical problem of environmental economic dispatch of power systems.

4 CASE STUDY

In order to validate the proposed procedure, a test hydrothermal system is taken for case study (Naresh &
Sharma, 1999). The system consists of a multi-chain cascade of four hydro plants and three thermal units.
The details data of the system considered here are the same as in Ref.

4.1 Hydrothermal scheduling problem

The solution of environmental economic dispatch problem aims to minimize the operation costs of thermal
power plant and contaminative gas emission simultaneously, while satisfying a series of equality and inequal-
ity constraints (Talaq, EI-Hawary & EI-Hawary, 1994; Yalcinoz & Koksoy, 2007; Abido, 2003).

4.1.1 Problem objectives

(1) Economy objective

The generator cost curves are represented by quadratic functions of real power generation by that unit, the
total fuel cost can be formulated as:

min f, = i i A (PD] = i i [a, +b, P +c, (P +|d,sin(e, (P = P))] 6)

t=1 i=1 t=1 i=1

where a,,b;and c are the cost curve coefficients of the ith thermal unit, P, (¢) is the output power of the

si 2

., e, are the valve-point effects coefficients of the ith thermal plant; PI™ is
the minimum output limit of the ith thermal plant.

ith thermal unit at period ¢, d ,, e
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(2) Emission objective
Since SO2 and NOx emissions are generally taken to be proportional to the generator’s fuel consumption,

total emission function to represent SO2 and NOx emissions are used in this paper is the same form as that of
the fuel cost function. Hence, the total emission of the hydro-thermal system can be expressed as:

min £, =min 5 > [a,, + B, P, () + v, P2 () +n, exp(3, P, ()] ™

t=1 i=1
where a, B,,,v,.n,,and O, are emission curve coefficients of the ith thermal unit.

4.1.2 System constraints

The problem subjects to is subjected to the following equality and inequality constraints:

(3) Power balance constraints
N,
s h _ —
ZP,.,,+ZE;),—PD,,—Q, =0, ¢=12,...,T ®)

where B, is the load demand at period t, F} . the total transmission line losses at period t, P! is the out-
put power of the jth hydro plant at period t, and Nh is the number of hydroelectric plants.

(4) Real power output limits

<P, i=1,...,N, and P!

J,min

<Pl <P, i=1..N, )
where, Pj/fmin and Pj]fmax are the lower and upper generation limits of the jth hydroelectric plant, respectively.

(5) Reservoir storage volumes limits

V

Jj,min

Vi Vs J=LesN, ©)

where V_,-,mm and V_,-,max are the minimum and maximum storage volume of the jth reservoir, respectively.
(6) Hydro plant power limits

Q_/’,min s Q_/,t < Q_/,max’ .] =19""Nh
(10)
where Qj,min and €).max are the minimum and maximum water discharge rate of the jth hydroelectric plant,
respectively.

(7) Initial and terminal reservoir storage volumes

boci
Vie=V"" 1,

d .

J 5T :Vim > le""’Nh (11)
begi d S -

where V, “" and Vf” are the initial and final storage volume of reservoir j.

(8) Water dynamic balance equation with travel time

N,

uj

Viea =V + [Ij., ~0,, =8, +> Orior, + Seier, ) | B (12)

k=1

where /;, is the nature inflow rate of the jth reservoir at period 7, N,,j is the number of upstream units di-

rectly above the jth hydroelectric plant, S,, is the spillage of the jth reservoir at time ¢, and Tj; is the water
transport delay from reservoir k to j.
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(9) Hydroelectric generation relation

P, =Gy (V) +Cy Q) +Cy, V-0, +Cyy V4 Ci 0, +C (13)
j=12,.N,, t=12,...,T

where Cy;, Cy, Cs;, Cy, Cy, and Cg are the power generation coefficients of jth hydroelectric plant, O, is the
water discharge rate of jth reservoir at period ¢, V}, is the storage volume of jth reservoir at period ¢.

4.2 Solution methodology based on CM-DEMO

In this section, some method of proposed CM-DEMO for solving generation scheduling of this hydrother-
mal system is described in details. Especially, a suggestion will be given on how to handle constraints of the
problem.

4.2.1 Initialization

In the initialization procedure, the population is initialized by creating NP solutions randomly. For all solu-
tions in the initial population, each element is randomly generated within the feasible real power output range
to the constraint. For the present problem, it is discharge rate of each hydro plant and the power generated by
each thermal unit. Thus the population is initialized as follows:

Q1,19Q1,2a"'>Q1_T,"'aQNh,pQNh,za""QN,“T,
Y N S S N S
])1,19})1,2"”7])1]7'”’PNS,I’PNS,Zﬁ.”’PN

T

5

The dimension n =[(N, + N)*T] . P". is randomly generated between Qj,min and Q/,max, and P,V, is ran-

domly generated between Pj/,'min and P/’jmax. Generally, the newly generated individuals do not satisfy all the

constraints and need to be modified by the constraints handling method, described next.

4.2.2 Mutation, crossover and selection

New values of water discharge rate and power generation are generated through mutation and crossover op-
eration according to (8) and (2) respectively. Now, selection is performed by calculate the fitness values of the
different individuals. The individuals in the current population are evaluated in the objective space and then
assigned a scalar value known as fitness. Depending on the fitness values, individuals will be selected to form
the new population. Individuals which have a low fitness value have the chance to be selected. It is worth
mentioning that the constraint-handling approach implemented in this study is that the unfeasible solutions
are penalized by assigning a very high value for their fitness.

4.2.3 Constraint handling

Firstly, When population initialization, crossover has been implemented, the new generated solution may
not satisfy equality constraints (1) and (5). At present, penalty method is the most popular constraints han-
dling strategy for dealing with this equality constraint at present by using penalty function to punish the in-
feasible solution during the selection procedure to ensure the priority of feasible ones. However, this strategy
may degrade the efficiency of the algorithm remarkably for it requires multiple runs to tune the penalty fac-
tors.

Secondly, we focus on handling the output capacity limits (2) and water release limits (4) when the pro-
posed CM-DEMO method is applied to solve environmental economic dispatch problem.

Despite the popularity of penalty functions, they have several drawbacks among which the main one is that
they require a careful fine tuning of the penalty factors that accurately estimates the degree of penalization
to be applied as to approach efficiently the feasible region. In order to keep the advantages of the penalty
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function approach and overcome drawback of choice penalty factors, this paper apply an effective constraint
handling method for DE, which does not require to set any additional parameters in comparison with the orig-
inal DE. Therefore, in order to strike a balance between computational efficiency and constraints handling,
the following selection strategy is adopted by the proposed CM-DEMO method to choose the better solution
while considering the constraints violation during the selection operation:

(1) If solution P1 is feasible and solution P2 is infeasible, then P1 is favored.

(2) If both P1 and P2 are feasible, the Pareto-dominance based selection will be implemented to decide
which one is better, the selection operation is modified as follows:

1) If the candidate dominates the parent, replace the parent by the candidate.
2) If the parent dominates the candidate, the candidate is discarded.

3) If the candidate and parent are non-dominated with each other, a new population of the size between NP
and 2NP is created, and then add the non-dominated candidates and parents into it.

(3) If both P1 and P2 are infeasible, then the one with smaller constraints violation is favored.

4.3 Simulation results

With the parameter settings listed in Table 3, the proposed method coded by Microsoft Visual C++6.0 lan-
guage on a Pentium-4 2.0GHz-based processor computer is applied to solve the optimal generation schedul-
ing of this hydrothermal system. The hourly each hydro plant power generation are showed in Table 4. The
hourly each reservoir release and storage trajectories are showed in Figures 7 and 8 respectively.

Table 3: Parameter settings for CM-DEMO

Method Generation number Population size Crossover parameter Scaling factor

CM-DEMO 1000 50 0.5 0.1

Table 4:Hourly hydrothermal power generation scheduling (Unit: 104KW)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Py 73.77 79.17 80.44 75.14 7826 68.15 72.03 79.44 7942 8844 8486 8438
P2 5293  50.04 5096 5397 5409 56.03 61.14 6082 76.02 6739 5632 85.79
Pz 3460 24.82 2747 3486 3253 2229 3823 3318 37.06 2693 3747 2891
Pra 131.8  129.0 1257 1227 1157 130.8 1904 2232 283.0 3005 2894  299.1
Py 1049 162.6 1749 1044 1079 1749 1747 1039 1749 175 174.8 174.8

Py 198.7 193.0 1252 2074 196.7 2092 2204 211.1 2069 209.8 2347 2237
Ps3 153.0 1413 1151 51.41 8473 1384 1929 2982 2325 211.7 2222 253.1
Hour 13 14 15 16 17 18 19 20 21 22 23 24

Py 90.27 78.73 8322 86.94 8429 81.08 71.78 65.18 5731 6657 5997  59.23
P2 82.86 6142 7039 7220 7234 7535 63.85 69.08 82.69 8851 73.67 6152
Py3 33.14 40.57 4201 46.76 4924 5127 5176 54.12 5481 5739  56.71 57.91
Py 288.6  304.0 2825 3022 2950 2932 2954 2764 2953 2593  288.8 2795
Py 1744 1749 1742 1749 1749 175 1622 111.1 1379 1232 125.72 120.75
Py 230.5 2152 2105 2289 2108 2172 1995 1793 1267 1259 195.0 171.0
Pg 210.0 155.0 147.0 1479 1632 226.8 2252 2946 1551 139.0 50 50
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Figure 8:Hourly hydro plant storage

In the meantime, to validate the results obtained with the proposed CM-DEMO method, the same problem
is solved using DEMO, NSGA II, SPEA II methods, the results of test system are also summarized in Table 5
for the convenience of comparisons.

Table 5: Comparisons of schedule results with other methods

Method Total fuel cost ($) Total emission (Ib)
CM-DEMO 44781 16870
DEMO 45050 17083
NSGA II 45534 16974
SPEA I1 45431 16838

It is clear from Table 3 that the total fuel cost and total emission obtained by CM-DEMO are much less
compared to the corresponding values of the other methods. In addition, during these 20 independent sim-
ulations, it demonstrates that total fuel cost and total emission generate a variation in a small range with
trial numbers when using the proposed CM-DEMO method. As can be seen from the simulation results of
CM-DEMO method, the solutions are optimal and they also satisfy various constraints completely for solving
environmental economic dispatch problem.

5 CONCLUSIONS

In this paper, a modified multi-objective differential evolution optimization algorithm based on center muta-
tion mechanisms has been proposed. The algorithm replaces the original mutation and crossover operation to
the improved form, which is center mutation and adaptive crossover. Simulation results and the comparison
confirm the effectiveness and the superiority of the proposed approach over the other techniques in terms of
the quality and precision of solution, so it provides an effective method to solve the environmental economic
dispatch.
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